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Control Systems Laboratory (EE 3321) — Experiment 4 
Transfer Functions and Control System Characteristics 

I. Overview of Experimental Procedure 

This experiment utilizes the same theory as the previous two experiments to derive the transfer functions of both 

tanks in the Coupled Tank System. During this experiment, the student will investigate the dynamic behavior of Tanks 

1 and 2. Since the open-loop system is stable, they will determine the required pump voltages to control the levels of 

Tanks 1 and 2 to desired levels in open loop. 

II. Plant Description 

In this experiment, we will analyze the Coupled-Tank plant. The hardware for this plant is available in the 
lab, allowing you to examine the actual system you will be working with. This plant will be used for hardware 

implementation in the final two experiments. Here, we will conduct software simulations for this plant. 

A schematic of the Coupled-Tank plant is represented in Figure 2.1, below. As illustrated in Figure 2.1, the 

positive direction of vertical level displacement is upwards, with the origin at the bottom of each tank (i.e. 

corresponding to an empty tank). 

  

Figure 2.1: Schematic of Coupled Tank.  

The system's two water tanks are made of Plexiglas tubes of uniform cross section. The Coupled-Tank pump is a gear 

pump composed of a DC motor rated for 12 V continuous and 22 V peak with heat radiating fins.  

Each tank's actual liquid level is measured through a pressure sensor. Such a level sensor is located at the bottom of 

each tank and provides linear level readings over the complete liquid vertical level. In other words, the sensor output 
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voltage increases proportionally to the applied pressure. Its output measurement is processed through a signal 

conditioning board and made available as 0 to 5V DC signal. Moreover, calibration of each pressure sensor's offset 

and gain potentiometers is required to keep level measurements consistent with the type of liquid used in the coupled-

tank experiment. 

III. Nonlinear Equation of Motion (EOM) 

 To derive the mathematical model of your Coupled-Tank system in Figure 2.1, it is reminded that the pump 
feeds into Tank 1 and that Tank 2 is not considered at all. Therefore, the input to the process is the voltage to the pump 
𝑉 and its output is the water level in tank 1, 𝐿ଵ, (i.e. top tank). The obtained Equation of Motion, EOM, should be a 
function of the system's input and output, as previously defined. 

Therefore, you should express the resulting EOM under the following format: 

𝜕𝐿ଵ

𝜕𝑡
= 𝑓൫𝐿ଵ, 𝑉൯ (2.1) 

Where 𝑓 denotes a function. 

 

In deriving the Tank 1 EOM the mass balance principle can be applied to the water level in tank 1, i.e.. 

𝐴௧ଵ

𝜕𝐿ଵ

𝜕𝑡
= 𝐹ଵ − 𝐹ଵ (2.2) 

Where 𝐴௧ଵ 𝑖s the area of Tank1. 𝐹ଵ and 𝐹ଵ are the inflow rate and outflow rate, respectively. The volumetric inflow 
rate to tank 1 is assumed to be directly proportional to the applied pump voltage, such that: 

𝐹ଵ = 𝐾𝑉 (2.3) 

Applying Bernoulli's equation for small orifices, the outflow velocity from tank 1, 𝑣ଵ, can be expressed by the 
following relationship: 

𝑣ଵ = ඥ2𝑔𝐿ଵ (2.4) 

IV. EOM Linearization 

Real systems often exhibit nonlinearity. However, to analyze system behavior or design a controller, we often 

work with linear systems. In control theory, we use Taylor series expansion to linearize a nonlinear system around an 

equilibrium point. This equilibrium point is where we want our system to settle in steady-state. Therefore, we can find 

the equilibrium point by setting all the derivatives of the nonlinear differential equation to zero. 

The nonlinear EOM of tank 1 should be linearized around a quiescent point of operation. By definition, static 

equilibrium at a nominal operating point ൫𝑉, 𝐿ଵ൯ is characterized by the Tank 1 level being at a constant position 

𝐿ଵ due to a constant water flow generated by constant pump voltage 𝑉.  

In the case of the water level in tank 1, the operating range corresponds to small departure heights, 𝐿ଵଵ, and small 

departure voltages, 𝑉ଵ, from the desired equilibrium point ൫𝑉, 𝐿ଵ൯. Therefore, 𝐿ଵ and 𝑉 can be expressed as the 

sum of two quantities, as shown below: 

𝐿ଵ = 𝐿ଵ + 𝐿ଵଵ,   𝑉 = 𝑉 + 𝑉ଵ (2.5) 

The obtained linearized EOM should be a function of the system's small deviations about its equilibrium point 

൫𝑉, 𝐿ଵ൯. Therefore, one should express the resulting linear EOM under the following format: 

𝜕𝐿ଵଵ

𝜕𝑡
= 𝑓൫𝐿ଵଵ, 𝑉ଵ൯ (2.6) 

Where 𝑓 denotes a function. 
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V. Coupled Tank Model Parameters 

Below table, lists and characterizes the main parameters associated with the two-tank specialty plant. Some of these 

parameters can be used for mathematical modelling of the Coupled-Tank system as well as to obtain the water level's 

EOM. 

 

VI. Experimental Procedure 

1) Derive the Equation of Motion (EOM) characterizing the dynamics of tank 2. Is the tank 2 system's EOM 
linear? 

2) Find the nominal level of the tank 1 at system's static equilibrium. By definition, static equilibrium at a nominal 
operating point (𝐿ଵ, 𝐿ଶ) is characterized by the water in tank 2 being at a constant position level 𝐿ଶ due to 
the constant inflow rate generated by 𝐿ଵ. (Assume 𝐿ଶ = 15 𝑐𝑚). 

3) Linearize tank 2 water level's EOM found in Problem 1 about the quiescent operating point (𝐿ଵ, 𝐿ଶ). 

4) Derive the transfer of function of the tank 2. Consider the 𝐿ଶ as the output and 𝐿ଵ as the input. 

5) Using the linearized equations in experiment 2, derive the transfer of function of the tank 1. Consider the 𝐿ଵ 
as the output and 𝑉 as the input of the tank 1. 

6) Using the two transfer functions, obtain the transfer function of the entire cascade system. Consider the 𝐿ଶ as 
the output and 𝑉 as the input. 

7) Verify the transfer function of the entire system in MATLAB Simulink. 

Hint: You need to simulate the nonlinear equations and compare with the transfer function. 

8) Determine the settling time of the transfer function theoretically and verify it through simulation. 

9) Consider the standard second-order transfer function equation: 

𝐺(𝑠) =
𝜔

ଶ

𝑠ଶ + 2𝜉𝜔𝑠 + 𝜔
ଶ
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Assume your desire to have a dynamic response with 𝜉 = 1 , and the 𝜔 = 4. How we can design the coupled-tank 

systems to have the desired behavior. Is there any other way without violating the integrity of the already designed 

system?! 


